Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38658361

RESUMEN

BACKGROUND: With the increasing occurrence of extreme temperature events due to climate change, the attention has been predominantly focused on the effects of heat waves and cold spells on morbidity and mortality. However, the influence of these temperature extremes on blood parameters has been overlooked. METHODS: We conducted a cohort study involving 2,752 adult blood donors in Tianjin, China, between January 18, 2013, and June 25, 2021. The generalized additive mixed model was used to investigate the effects and lagged effects of heat waves and cold spells on six blood parameters of blood donors, including alanine aminotransferase (ALT), white blood cell count (WBC), red blood cell count (RBC), hemoglobin (HB), hematocrit (HCT), and platelet count (PLT). Subgroup analyses were stratified by sex, age, and BMI. RESULTS: Heat waves and cold spells are associated with changes in blood parameters, particularly HB and PLT. Heat waves increased HB and PLT, while cold spells increased HB and decreased PLT. The effect of heat waves is greater than that of cold spells. The largest effect of heat waves on HB and PLT occurred at lag1 with 2.6 g/L (95% CI: 1.76 to 3.45) and lag7 with 9.71 × 10^9/L (95% CI: 6.26 to 13.17), respectively, while the largest effect of cold spells on HB and PLT occurred at lag0 with 1.02 g/L (95% CI: 0.71 to 1.33) and lag2 with -3.85 × 10^9/L (95% CI: -5.00 to -2.70), respectively. In subgroup analysis, the effect of cold spells on ALT was greater in the 40-49 age group. CONCLUSION: We indicated that heat waves and cold spells can impact hemoglobin and platelet counts in the human body. These findings provide evidence linking heat waves or cold spells to diseases and may reduce health risks caused by extreme temperature events.


Asunto(s)
Donantes de Sangre , Frío , Calor , Humanos , Masculino , Femenino , Donantes de Sangre/estadística & datos numéricos , China/epidemiología , Adulto , Persona de Mediana Edad , Estudios de Cohortes , Calor/efectos adversos , Adulto Joven , Hemoglobinas/análisis
2.
Sci Total Environ ; 922: 171128, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38395168

RESUMEN

This study comprehensively investigated the impact of dust storms (DSs) on downstream cities, by selecting representative DS events. In this paper, we discussed the characteristics of meteorological conditions, air pollutants, PM2.5 components, and their influence on sulfate formation mechanisms. During DSs, strong winds, reaching speeds of up to 10 m/s, led to significant increases in PM10 and PM2.5, with maximum concentrations of 2684.5 and 429 µg/m3, respectively. Primary gaseous pollutants experienced substantial reductions, with decline rates of 48.1, 34.9, 36.8, and 9.0 % for SO2, NO2, NH3, and CO, respectively. Despite a notable increase in PM2.5 concentrations, only 7.6 % of the total mass of PM2.5 was attributed to ionic and carbonaceous components, a much lower value than observed before the DSs (77.3 %). Concentrations of Fe, Ti, and Mn exhibited increases by factors of 6.5-14.1, 10.4-17.0, and 1.6-4.7, respectively. In contrast to the significant decrease of >76.2 % in nitrogen oxidation ratio (NOR), sulfur oxidation ratio (SOR) remained at a relatively high level, displaying a strong positive correlation with high concentrations of Fe, Mn, and Ti. Quantitative analysis revealed an average increase of 0.187 and 0.045 µg/m3 in sulfate from natural sources and heterogeneous generation, respectively. The heterogeneous reaction on mineral dust was closely linked to atmospheric humidity, radiation intensity, the form of metal existence, and concentrations of it. High concentrations of titanium dioxide and iron­manganese oxides in mineral dust promoted heterogeneous oxidation of SO2 through photocatalysis during the daytime and metal ion catalysis during the nighttime. This study establishes that the metal components in mineral dust promote heterogeneous sulfate formation, quantifies the yield of sulfate generated as a result, and provides possible mechanisms for heterogeneous sulfate formation.

3.
Environ Pollut ; 336: 122472, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37648057

RESUMEN

The Beijing Daxing International Airport is a newly opened airport, and a comprehensive emission inventory of air pollution sources has not yet been established. The lack of basic inventory data will cause difficulties in controlling the air quality (AQ) in and around the airport. Based on actual flight data, we established a comprehensive emission inventory (carbon monoxide (CO), nitrogen oxides (NOX), hydrocarbons (HC), sulfur dioxide (SO2), particulate matter (PM), and carbon dioxide (CO2)) at Beijing Daxing International Airport. Furthermore, we evaluated the impact of airport emissions on the AQ of the surrounding areas using the ADMS-Airport model. The results showed that Beijing Daxing International Airport emitted 1.15 E+03, 1.76 E+03, 1.38 E+02, 1.16 E+02, 3.53 E+01, and 3.75 E+05 t of CO, NOX, HC, SO2, PM, and CO2, respectively, from July 1, 2020, to June 30, 2021. Engine exhaust emissions (landing and takeoff [LTO] cycles) dominated all airport pollutant emissions except for PM from the power plant. Among all aircraft types, B738 emitted the most CO2, as it accounted for almost half of all the flights. The AQ simulations showed that the air pollutant diffusion range was concentrated within 15 km of the airport and the surrounding areas. The contribution of airport emissions to NOX concentrations was most apparent under the most unfavorable meteorological conditions. Based on the average pollutant concentration during the study period, the Gu'an Li Hu Primary School station was the most affected. In particular, NOX concentrations at this station were approximately 50% higher in winter than in summer. Currently, the airport's contribution to pollution in the surrounding areas is insignificant. However, with the continuous increase in the number of flights at the airport, its impact on the AQ in the surrounding areas must be addressed in the future.

4.
Environ Sci Pollut Res Int ; 30(16): 47248-47261, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36737565

RESUMEN

China faces increasing health risks from climate change. The structure and function of the eye and vision were affected by extreme heat and cold. The study aimed to evaluate the impacts of heatwaves and cold spells on glaucoma. A national cross-sectional study of the Rural Epidemiology for Glaucoma (REG-China) was conducted in ten provinces of China, and 36,081 adults aged 40 years or more were included. Glaucoma signs were assessed via a standard examination. A total of 15 heatwave definitions, based on intensity (95th to 99th percentiles of temperature distribution) and duration (≥2 days, 3 days, and 4 days), were used to quantify heatwave effects, and 6 cold spell definitions were defined based on threshold temperature percentile (5th and 10th) and duration (3 days, 5 days, and 9 days). Multivariable-adjusted logistic regression models paired with interaction analysis were performed to investigate the impacts of heatwaves and cold spells on glaucoma, and the dose-response relationships were assessed using a restricted cubic spline (RCS) model. Subgroup analysis was conducted stratified by gender, age, smoking status, occupation, and family history of glaucoma. The overall prevalence of glaucoma was 2.1% (95% CI 1.94-2.25%). Higher heatwaves were significantly correlated with higher OR of glaucoma, with the OR (95% CI) ranging from 1.014 (1.009, 1.018) to 1.090 (1.065, 1.115) by different definitions. Glaucoma was affected by heatwaves more strongly than by cold spells. The effects of both heatwaves and cold spells were higher in males than females and in smokers than nonsmokers. These results of the present study evoked the attention of prospective research to elucidate the relationship between extreme temperatures and eye diseases.


Asunto(s)
Frío , Glaucoma , Adulto , Masculino , Femenino , Humanos , Estudios Transversales , Estudios Prospectivos , Calor , China/epidemiología , Glaucoma/epidemiología
5.
Artículo en Inglés | MEDLINE | ID: mdl-36631073

RESUMEN

BACKGROUND: Weather conditions are a possible contributing factor to age-related macular degeneration (AMD), a leading cause of irreversible loss of vision. The present study evaluated the joint effects of meteorological factors and fine particulate matter (PM2.5) on AMD. METHODS: Data was extracted from a national cross-sectional survey conducted across 10 provinces in rural China. A total of 36,081 participants aged 40 and older were recruited. AMD was diagnosed clinically by slit-lamp ophthalmoscopy, fundus photography, and spectral domain optical coherence tomography (OCT). Meteorological data were calculated by European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis and were matched to participants' home addresses by latitude and longitude. Participants' individual PM2.5 exposure concentrations were calculated by a satellite-based model at a 1-km resolution level. Multivariable-adjusted logistic regression models paired with interaction analysis were performed to investigate the joint effects of meteorological factors and PM2.5 on AMD. RESULTS: The prevalence of AMD in the study population was 2.6% (95% CI 2.42-2.76%). The average annual PM2.5 level during the study period was 63.1 ± 15.3 µg/m3. A significant positive association was detected between AMD and PM2.5 level, temperature (T), and relative humidity (RH), in both the independent and the combined effect models. For PM2.5, compared with the lowest quartile, the odds ratios (ORs) with 95% confidence intervals (CIs) across increasing quartiles were 0.828 (0.674,1.018), 1.105 (0.799,1.528), and 2.602 (1.516,4.468). Positive associations were observed between AMD and temperature, with ORs (95% CI) of 1.625 (1.059,2.494), 1.619 (1.026,2.553), and 3.276 (1.841,5.830), across increasing quartiles. In the interaction analysis, the estimated relative excess risk due to interaction (RERI) and the attributable proportion (AP) for combined atmospheric pressure and PM2.5 was 0.864 (0.586,1.141) and 1.180 (0.768,1.592), respectively, indicating a synergistic effect between PM2.5 and atmospheric pressure. CONCLUSIONS: This study is among the first to characterize the coordinated effects of meteorological factors and PM2.5 on AMD. The findings warrant further investigation to elucidate the relationship between ambient environment and AMD.


Asunto(s)
Contaminantes Atmosféricos , Degeneración Macular , Humanos , Adulto , Persona de Mediana Edad , Estudios Transversales , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , China/epidemiología , Degeneración Macular/epidemiología , Degeneración Macular/etiología , Conceptos Meteorológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...